
208 IEEE SIGNAL PROCESSING LETTERS, VOL. 21, NO. 2, FEBRUARY 2014

Decision Fusion With Unknown
Sensor Detection Probability
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Abstract—In this letter we study the problem of channel-aware
decision fusion when the sensor detection probability is not known
at the decision fusion center. Several alternatives proposed in the
literature are compared and new fusion rules (namely “ideal sen-
sors” and “locally-optimum detection”) are proposed, showing at-
tractive performance and linear complexity. Simulations are pro-
vided to compare the performance of the aforementioned rules.

Index Terms—Decentralized detection, decision fusion, locally-
optimum detection (LOD), wireless sensor networks (WSNs).

I. INTRODUCTION

T HERE is a vast literature on decision fusion (DF) in wire-
less sensor networks (WSNs) [1]. There are cases where

the uniformly more powerful test is independent from the sen-
sors performance [2], however most authors assume that the
sensor performance are known to the DF center (DFC) [3], [4],
[5] to derive the likelihood ratio test (LRT). Two approaches are
used to relax this requirement: (i) the use of sub-optimal rules
(e.g. the diversity statistics in [3], [4], [6], (ii) assuming the prob-
ability of false alarm at the sensors is known and estimating the
detection probability as part of a composite hypothesis test [7].
In this letter we study channel-aware DF when the

false-alarm probability of the generic sensor is known,
while the detection probability is unknown. First, we perform
a detailed comparison of existing fusion alternatives, not
requiring knowledge of sensor detection probability, based
on the approaches (i) (i.e. the counting rule [1]) and (ii) (i.e.
the rule proposed in [7], denoted here as “Wu rule”). The
comparison is strengthened by a theoretical analysis in the case
of a large number of sensors, based on deflection measures
[8]. Also, we derive two novel rules, based on “ideal sensors”
assumption (approach (i)) [3], [4], [9] and locally-optimum
detection (approach (ii)) [10]. For all the considered rules
high/low signal-to-noise ratio (SNR) optimality properties are
established in a scenario with identical sensors and a discussion
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on complexity and required system knowledge is reported.
Finally, the case of non-identical sensors is considered.
The paper is organized as follows: Section II introduces the

model; in Section III we derive and study the fusion rules, while
in Section IV we generalize the analysis to the case of non-
identical sensors; in Section V we compare the presented rules
and confirm the theoretical findings through simulations; finally
in Section IV we draw some conclusions.

II. SYSTEM MODEL

The model is described as follows1. We consider a decentral-
ized binary hypothesis test, where sensors are used to dis-
criminate between the hypotheses of the set ,
representing the absence ( ) or the presence ( ) of a phe-
nomenon of interest. The a priori probability of is de-
noted . The th sensor, , takes
a binary decision about the phenomenon on the basis
of its own measurements, which is then mapped to a symbol

; without loss of generality (w.l.o.g.) we assume
that maps into , .
The quality of the th sensor decisions is character-

ized by the conditional probabilities : we denote
and the probabili-

ties of detection and false alarm of the th sensor, respectively.
Initially, we assume conditionally independent and identically
distributed (i.i.d.) decisions; this restriction will be relaxed
in Section IV. Also we assume , because of the
informativeness of the decision at each sensor. Differently from
[4], we assume that is known at the DFC, but on the other
hand that the true is unknown, as studied in [7].
The th sensor communicates to the DFC over a dedicated

binary symmetric channel (BSC) and the DFC observes a
noisy binary-valued signal , that is with probability

and with probability , which we
collect as . We denote the bit-error
probability (BEP) of the th link2. The BSC model arises
when separation between sensing and communication layers is
performed in the design (a “decode-then-fuse” approach [6]).

1Notation - Lower-case bold letters denote vectors, with being the th el-
ement of ; denotes the -norm of ; upper-case calligraphic letters, e.g.
, denote finite sets; , and denote expectation, variance and

transpose, respectively; and are used to denote probability mass func-
tions (pmf) and probability density functions (pdf), respectively, while
and their corresponding conditional counterparts; denotes a
proper complex-valued Gaussian pdf with mean and variance , while
is the complementary cumulative distribution function of a standard normal
random variable; denotes a uniform pdf with support ; finally the
symbol means “distributed as”.
2Throughout this letter we make the reasonable assumption .
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Fig. 1. for sensors as a function of ,
conditionally i.i.d. decisions .

The pmf of is the same under both and , except for the
value of the unknown parameter . Denoting
the pmf with , the test is summarized as:

(1)

which is recognized as a one-sided (composite) test [11].

III. FUSION RULES

The final decision at the DFC is performed as a test comparing
a signal-dependent fusion rule and a fixed threshold :

(2)

where denotes the estimated hypothesis. Hereinafter we pro-
pose different fusion rules for the considered problem.
(Clairvoyant) LRT - in this case we assume that also is

known at the DFC. The explicit expression of the LRT is given
by

(3)

where
and . It is apparent
that Eq. (3) should not be intended as a realistic element of com-
parison, but rather as an optimistic upper bound on the achiev-
able performance (since it makes use of both and ). Dif-
ferently, in this letter it is assumed that can be easily ob-
tained, as in [12].
Ideal sensors (IS) rule - we obtain this rule by assuming that

the sensing phase works ideally, that is . This
simplifying assumption is exploited in Eq. (3), thus leading to:

(4)

TABLE I
COMPARISON OF RULES W.R.T. SYSTEM KNOWLEDGE REQUIREMENTS

Fig. 2. vs. ; WSN with and (resp.
); (resp.

) for conditionally i.i.d. (resp. i.n.i.d.) decisions.

The assumption behind Eq. (4) is not new: indeed it was consid-
ered in [3], [4], [9] to derive sub-optimal rules (i.e. themaximum
ratio and the equal gain combiners) under different communi-
cation models.
Locally-optimum detection (LOD) rule - the one-sided na-

ture of the test considered allows to pursue a LOD-based ap-
proach, whose implicit expression is given by [10], [11]

(5)

where represents the Fisher information (FI), that is:

(6)

The explicit form of is shown in Eq. (7) at the top of
the next page; the derivation is given as supplementary material.

(7)

Counting rule (CR) - this rule is widely used in DF (due to
its simplicity and no requirements on system knowledge) and
it is obtained by assuming that the communication channels are
ideal, i.e.

(8)
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since entails and irrelevant terms are
incorporated in through Eq. (2).
Wu rule [7] - this rule was proposed by Wu et al. and it was

shown to outperform a GLRT rule for all the scenarios consid-
ered. We report only the final result and omit the details. First
an approximate3 maximum-likelihood (ML) estimate of is
obtained as

(9)

then the following statistic is employed:

(10)

Remark: when all the rules are equivalent4. Thus,
when the SNR goes to infinity (i.e. ) all the rules un-
dergo the same performance. The only exception is , since

(such a difference leads to a loss in per-
formance, as shown in Section V). Differently, in the low SNR
regime their behaviour is significantly different, as shown by the
following proposition.
Proposition 1: When the SNR is low at each link, and

approach , while does not.
Proof: Given as supplementary material.

It is worth noting that: (i) Prop. 1 does not require to be
equal and that (ii) the low-SNR optimality of in Prop. 1 is
coherent with the results shown in [4], [5], [6].
Wu rule vs CR deflection comparison: since all the con-

sidered rules are equivalent to scaled sums of independent
Bernoulli random variables, the pmf is intractable
[7]. Hence we rely on the so-called deflection measures [8]

to perform a theoretical comparison
between and . This choice is justified since, as
grows large, converges to a Gaussian pdf (in virtue
of the central limit theorem [13]). It can be shown that for CR
and Wu rule the deflections assume the following expressions:

(11)
where , ,

and .
W.l.o.g., we assume , which in turn gives

, and (since we
assume ). Consequently, the Chebyshev’s sum in
equalities [14] and

hold, which jointly
give:

(12)

3This was derived under a high-SNR assumption [7].
4We use the term “equivalent” to refer to statistics which are equal up to

a scaling factor and an additive term (both independent on and finite), thus
leading to the same performance [11].

where and the first inequality arises from
the application of Cauchy-Schwartz inequality [15] to .
In Fig. 1 we illustrate (in aWSN with
) as a function of in a scenario with

. It is confirmed that is always dominated by
and that the effect is more pronounced when and

differ significantly (indeed when , is
equivalent to ). The superiority of is also confirmed
via the results in Section V.
Discussion on complexity and system knowledge: as dis-

cussed in [7], being affine in (cf. Eqs. (9)-(10)) is one
of the main advantages w.r.t. the GLRT. This feature reduces
the complexity at the DFC and facilitate performance analysis.
Since all the considered alternatives (i.e. , and )
are also affine functions of , they exhibit the same advantages.
On the other hand, as summarized in Table I, the presented fu-
sion rules have different requirements in terms of system knowl-
edge. In fact, while and entail the same requirements
(i.e. and )), only needs . Finally, does not
require any parameter for its implementation.

IV. EXTENSION TO NON-IDENTICAL SENSORS SCENARIO

In this section we generalize the proposed rules to a scenario
with non-identical sensors, i.e. , , where

is known but is still unknown at the DFC.
(Clairvoyant) LRT - is obtained by replacing

(resp. ) with (resp. ) in Eq. (3).
LOD rule - the rule is extended to conditionally independent

and non-identically distributed (i.n.i.d.) decisions as:

(13)

CR, IS and Wu fusion rules - in this scenario re-
tains the same form as in Eq. (4), while it is apparent that

does not arise from the assumption
in . Nonetheless we will still keep in the comparison
of Section V, since it represents a natural “ -unaware”
alternative. Finally, we discard Eq. (10) from our comparison,
since the (approximate) ML estimate in Eq. (9) is performed
assuming .

V. NUMERICAL RESULTS

We compare the performance of the proposed rules in terms
of system false alarm and detection probabilities, defined as

(14)

respectively, where is the generic rule employed at the DFC.
Similarly as in [7], we consider communication over a

Rayleigh fading channel via on-off keying, i.e. ,
where , , ; is as-
sumed known at the DFC and therefore coherent detection is
employed. Given these assumptions, holds.
We define the (individual) communication SNR as the (average
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individual) received energy divided by the noise power, that is
in the i.i.d. case

(15)

while in the i.n.i.d. case . Here
we assume ; the figures are based on Monte
Carlo runs.
In Fig. 2 we report vs. in a scenario with condi-

tionally i.i.d. and i.n.i.d. decisions, respectively5. We study
a WSN with and local performance equal to

in the i.i.d case while
), and ) in

the i.n.i.d. case, where . We report
scenarios with (resp. , where

in the i.n.i.d. case). It is apparent that
and approach at in the

i.i.d. case (confirming Prop. 1), while there is a moderate
loss in the i.n.i.d. case6. However, suffers from signifi-
cant loss in performance in both cases and

. Also, in the i.i.d. case is outperformed
by both and , the latter being the best choice.
Finally, the oscillating behaviour of is explained since
the approximate ML estimate (cf. Eq. (9)) is not reliable
when the WSN is not of large size. Moreover the perfor-
mance of further degrades at low-medium SNR, since

, i.e. when
is not negligible, the estimator is biased (even if grows

large), as opposed to the exact ML estimate [16].
Fig. 3 shows vs. , assuming7 ;

we simulate a i.i.d. scenario, where
and we report the cases . First, simulations con-
firm the theoretical findings in Section III: (i) only and

approach at low SNR, while (ii) all the consid-
ered rules undergo the same performance as the increases.
The only exception is given by , which keeps close to
at low-to-moderate values and exhibits a unimodal be-
haviour, which is consequence of , as dis-
cussed in Section III. In fact as , the possible errors are
mainly due to the sensing part; on the other hand assumes
a perfect sensing phase (cf. Eq. (4)), thus misleadingly conjec-
turing that the whole process is error-free. Finally, is close
to over the whole SNR range considered, while has
a significant loss in performance and it is always “counter-intu-
itively” outperformed by (with no requirements on system
knowledge).
Finally, in Fig. 4 we show vs. , assuming .

We study a i.i.d. setup in the cases
(dashed and solid lines, resp.). We analyze the scenarios

(scenario A, as in [4]) and
(scenario B, as in [7]). The simula-

5Note that the concavity of the plots is not apparent, as instead suggested from
the theory [11]; this is due to the use of a log-linear scale.
6In fact, it can be verified that Prop. 1 does not hold in the latter scenario.
7In order to keep a fair comparison, we allow for rule randomization when-

ever its discrete nature does not allow to meet the desired exactly.

Fig. 3. vs. ; . WSN with sensors;
.

Fig. 4. vs. ; . WSN with ;
(scen. A) and (scen.

B).

tions confirm the performance improvement given by
with respect to and (at the expenses of slightly
higher requirements on system knowledge) and the significant
improvement with respect to (the latter being always
outperformed by , even when is large, as proved in
Section III). For example, in scenario A with ,

achieves with sensors as opposed to
when is employed.

VI. CONCLUSIONS

In this letter we studied DF when the DFC knows the false-
alarm probability of the generic sensor, but does not the detec-
tion probability. Wu rule is always (counter-intuitively, since it
makes use of BEPs and false alarm probabilities) outperformed
by the simpler counting rule, thus does not exploit effectively
the required system parameters. This result is confirmed by a
deflection-based analysis, with CR always dominating Wu rule,
irrespective of the specific BEPs and local performance (in the
i.i.d case) considered. Differently, the proposed LOD and IS
based rules are appealing in terms of complexity and perfor-
mance. LOD rule was shown to be close to the clairvoyant LRT
over a realistic SNR range (thus effectively exploiting knowl-
edge of BEPs and false alarm probabilities), both for condition-
ally i.i.d. and i.n.i.d. decisions, as opposed to IS rule (only re-
quiring the BEPs for its implementation) being close to the LRT
only at low-medium SNR. Optimality of both rules was proved
at low SNR in the i.i.d. case, thus motivating the knowledge of
false-alarm probability only at medium SNR in a homogeneous
scenario.



212 IEEE SIGNAL PROCESSING LETTERS, VOL. 21, NO. 2, FEBRUARY 2014

REFERENCES

[1] P. K. Varshney, Distributed Detection and Data Fusion, 1st ed. ed.
New York, NY, USA: Springer-Verlag, 1996.

[2] D. Ciuonzo, G. Romano, and P. Salvo Rossi, “Optimality of received
energy in decision fusion over Rayleigh fading diversity MAC with
non-identical sensors,” IEEE Trans. Signal Process., vol. 61, no. 1, pp.
22–27, Jan. 2013.

[3] A. Lei and R. Schober, “Coherent Max-Log decision fusion in wire-
less sensor networks,” IEEE Trans. Commun., vol. 58, no. 5, pp.
1327–1332, May 2010.

[4] B. Chen, R. Jiang, T. Kasetkasem, and P. K. Varshney, “Channel
aware decision fusion in wireless sensor networks,” IEEE Trans.
Signal Process., vol. 52, no. 12, pp. 3454–3458, Dec. 2004.

[5] R. Jiang and B. Chen, “Fusion of censored decisions in wireless
sensor networks,” IEEE Trans. Wireless Commun., vol. 4, no. 6, pp.
2668–2673, Nov. 2005.

[6] D. Ciuonzo, G. Romano, and P. Salvo Rossi, “Channel-aware decision
fusion in distributed MIMO wireless sensor networks: Decode-and-
fuse vs. decode-then-fuse,” IEEE Trans. Wireless Commun., vol. 11,
no. 8, pp. 2976–2985, Aug. 2012.

[7] J.-Y. Wu, C.-W. Wu, T.-Y. Wang, and T.-S. Lee, “Channel-aware de-
cision fusion with unknown local sensor detection probability,” IEEE
Trans. Signal Process., vol. 58, no. 3, pp. 1457–1463, Mar. 2010.

[8] B. Picinbono, “On deflection as a performance criterion in detection,”
IEEE Trans. Aerosp. Electron. Syst., vol. 31, no. 3, pp. 1072–1081, Jul.
1995.

[9] D. Ciuonzo, G. Romano, and P. Salvo Rossi, “Performance analysis of
maximum ratio combining in channel-aware MIMO decision fusion,”
IEEE Trans. Wireless Commun., vol. 12, no. 9, pp. 4716–4728, Sep.
2013.

[10] S. A. Kassam and J. B. Thomas, Signal Detection in Non-Gaussian
Noise. New York, NY, USA: Springer-Verlag, 1988.

[11] S. M. Kay, Fundamentals of Statistical Signal Processing, 2: Detection
Theory. Upper Saddle River, NJ, USA: Prentice-Hall PTR, Jan. 1998.

[12] S. Chaudhari, J. Lundén, V. Koivunen, and H. V. Poor, “Cooperative
sensing with imperfect reporting channels: Hard decisions or soft de-
cisions?,” IEEE Trans. Signal Process., vol. 60, no. 1, pp. 18–28, Jan.
2012.

[13] A. Papoulis, Probability, Random Variables and Stochastic Processes,
3rd ed. ed. New York, NY, USA: McGraw-Hill Companies, Feb.
1991.

[14] G. H. Hardy, J. E. Littlewood, and G. Pólya, Inequalities, Cambridge
Mathematical Library. Cambridge, U.K.: Cambridge Univ. Press,
1988.

[15] D. S. Bernstein, Matrix Mathematics: Theory, Facts, and Formulas.
Princeton, NJ, USA: Princeton Univ. Press, 2009.

[16] S. M. Kay, Fundamentals of Statistical Signal Processing, 1: Estima-
tion Theory. Upper Saddle River, NJ, USA: Prentice-Hall PTR, 1993.


